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of Si-H with the oxygen of water.10 In addition, we find that pH 
5.5 etched surfaces that have been reacted with basic (pH 9.5) 
solution are flat and featureless. This structure is similar to the 
featureless areas observed for pH 9 HF/NH4F etched silicon and 
appears to be characteristic of amorphous SiOx produced by the 
attack of OH" at the Si(111):H interface. The images of the 
surface reacted with pH 6 aqueous solution may thus represent 
an intermediate state along the reaction pathway which yields an 
interface covered with amorphous SiOx. In summary, these results 
show that it is possible to characterize at the atomic level reactions 
that are important to the chemical processing of semiconductor 
interfaces. Such information will be useful for developing new 
chemical procedures that produce specifically terminated inter­
faces. 
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The prevalence of the hydropyran subunit in numerous polyether 
and ionophore natural products has stimulated the development 
of a variety of synthetic methods for this heterocycle.2,3 Only 
syn-2,3-disubstituted hydropyrans (analogous to 3 and 8) are 
available via our dioxanone-to-dihydropyran route.2 A stereo-
chemically complementary method for selective production of 
anti-2,3-disubstituted hydropyrans was sought. We report herein 
a systematic study of a radical cyclization4 route to substituted 
tetrahydropyrans that satisfies this need, while delineating 
structural requirements for stereoselective closures. 

Several features of prototype substrate 1 for radical cyclization 
offered the promise of susceptibility to the steric effects of added 
substituents. The carbon-centered radical arising from C-S bond 
homolysis would enjoy additive or synergistic, captodative sta­
bilization5 by geminal donor and acceptor groups, implying a 
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relatively late transition state for cyclization. Also, the compressed 
C - O - C bond angle (106.8°) and shortened C - O bonds (1.41 A) 
relative to the analogous all-carbon system (109.5°, 1.52 A) 6 

suggest a tight transition structure in which nonbonded interactions 
would be of added significance. 

The following specific control elements were investigated: (1) 
the effect of the presence and stereochemistry of an alkenyl 
substituent on cyclization regio- and stereochemistry (e.g., 6, 9, 
and 13); (2) the effect of a C(3) substituent on the newly formed 
vicinal stereocenters (e.g., 18); (3) the effect of a gew-dimethyl 
residue in the tether on cyclization stereochemistry (e.g., 21 and 
26). 

Results addressing the first of these issues are presented in 
Scheme I. The radical formed from the simple substrate I 7 upon 
standard treatment (see Scheme I)4 gave rise to a mixture of four 
products (2-5) with little selectivity. Similar cyclization of 6 
proceeded to give only the hydropyran products 7 and 8 (5:1,91%). 
All anti and syn diastereomers reported here are easily distin­
guished by 1H N M R ; coupling constants for trans diaxial ( ~ 1 0 
Hz) and cis ( ~ 2 . 5 Hz) vicinal couplings to the C(2) methines 
are characteristic. Relative to the cyclization of 1, the tri-
methylsilyl substituent in 6 suppressed the 7-endo mode8 of cy­
clization and improved the anti:syn ratio. Also, the formation 
of the reduction product analogous to 5 was avoided by keeping 
the Bu3SnH concentration low by slow addition.9 
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in vacuo, and a crude 1H NMR spectrum was recorded. Chromatography 
on silica gel afforded pure diastereomers 7 (201 mg, 75.7%) and 8 (40 mg, 
15,1%), 
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The effects of silicon substituent identity and vinylsilane ge­
ometry are illustrated in Scheme II. Cyclization of the (E)-
(ferf-butyldiphenyl)silyl-substituted alkene 9 proceeded unselec-
tively, yielding 10,11, and 12 in nearly equal amounts. In contrast, 
radical cyclization of substrate 13, containing a (Z)-(tert-bu-
tyldiphenyl)silyl-substituted alkene, led to the anti diastereomer 
10 in 82% yield; no syn diastereomer 11 was detected. 

These observations can be explained by considering the cy­
clization conformers in Scheme III.1 0 There is little to ener­
getically differentiate 14 and 15; thus a 1.3:1 mixture of 10 and 
11 results from 9. However, conformer 16 has a substantial 
advantage over 17, thus producing only 10 from 13. Smaller silyl 
substituents, as in 6, make the conformation analogous to 17 less 
disfavored, leading to production of a small amount of the syn 
isomer 8 along with 7 . " 

The additional effect of a substituent at C(3) on the stereo­
chemical course of the cyclization is presented in Scheme IV. 
Homolytic cleavage of the carbon-selenium12 bond in 18 resulted 
in a radical cyclization producing only diastereomer 20. Equatorial 
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deployment of the tether substituent and the conformational 
preference for the bracketed intermediate 19 explain the transfer 
of stereogenicity to the newly formed asymmetric centers. '3 

The employment of a gew-dimethyl moiety in 21 (Scheme V) 
provided a steric differentiation between cyclization conformers 
22 and 23, favoring the latter.14 Only the anti tetrahydropyran 
diastereomer 24 was formed, but with an equal amount of the 
7-endo closure product 25. Substitution on the alkene terminus 
suppressed this mode of closure, so that 26 gave the anti 6-exo 
product 27 as the sole tetrahydropyran diastereomer. 
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Cation radicals1"3 and dications4 of aromatic compounds often 
exhibit superacid thermodynamic properties, yet react with bases 
at moderate rates. An extreme example is the dication of (p-
methoxyphenyOdiphenylmethane, which can be observed by cyclic 
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